MicroRNA Expression Signatures of Bladder Cancer Revealed by Deep Sequencing
نویسندگان
چکیده
BACKGROUND MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression. They are aberrantly expressed in many types of cancers. In this study, we determined the genome-wide miRNA profiles in bladder urothelial carcinoma by deep sequencing. METHODOLOGY/PRINCIPAL FINDINGS We detected 656 differentially expressed known human miRNAs and miRNA antisense sequences (miRNA*s) in nine bladder urothelial carcinoma patients by deep sequencing. Many miRNAs and miRNA*s were significantly upregulated or downregulated in bladder urothelial carcinoma compared to matched histologically normal urothelium. hsa-miR-96 was the most significantly upregulated miRNA and hsa-miR-490-5p was the most significantly downregulated one. Upregulated miRNAs were more common than downregulated ones. The hsa-miR-183, hsa-miR-200b ∼ 429, hsa-miR-200c ∼ 141 and hsa-miR-17 ∼ 92 clusters were significantly upregulated. The hsa-miR-143 ∼ 145 cluster was significantly downregulated. hsa-miR-182, hsa-miR-183, hsa-miR-200a, hsa-miR-143 and hsa-miR-195 were evaluated by Real-Time qPCR in a total of fifty-one bladder urothelial carcinoma patients. They were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium (p < 0.001 for each miRNA). CONCLUSIONS/SIGNIFICANCE To date, this is the first study to determine genome-wide miRNA expression patterns in human bladder urothelial carcinoma by deep sequencing. We found that a collection of miRNAs were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium, suggesting that they might play roles as oncogenes or tumor suppressors in the development and/or progression of this cancer. Our data provide novel insights into cancer biology.
منابع مشابه
Evaluation of MicroRNA-99a and MicroRNA-205 Expression Levels in Bladder Cancer
Bladder cancer is the second most common cancer in the genitourinary tract, showing often recurrence and progresse into invasive states. Epigenetic changes, such as microRNA alteration are involved in bladder cancer tumorigenesis through a variety of signaling pathways. The epigenetic state depends on geographic and lifestyle conditions. The aim of this study was to investigate the expression l...
متن کاملThe MicroRNA Expression Signature of Bladder Cancer by Deep Sequencing: The Functional Significance of the miR-195/497 Cluster
Current genome-wide microRNA (miRNA) expression signature analysis using deep sequencing technologies can drive the discovery of novel cancer pathways regulated by oncogenic and/or tumor suppressive miRNAs. We determined the genome-wide miRNA expression signature in bladder cancer (BC) by deep sequencing technology. A total of ten small RNA libraries were sequenced (five BCs and five samples of...
متن کاملDual tumor‐suppressors miR‐139‐5p and miR‐139‐3p targeting matrix metalloprotease 11 in bladder cancer
Our recent study of the microRNA (miRNA) expression signature of bladder cancer (BC) by deep-sequencing revealed that two miRNA, microRNA-139-5p/microRNA-139-3p were significantly downregulated in BC tissues. The aim of this study was to investigate the functional roles of these miRNA and their modulation of cancer networks in BC cells. Functional assays of BC cells were performed using transfe...
متن کاملCell-free microRNA expression signatures in urine serve as novel noninvasive biomarkers for diagnosis and recurrence prediction of bladder cancer
Urinary microRNAs (miRNAs) are potential biomarkers for the noninvasive diagnosis of bladder cancer (BC). In this study, we aimed to develop a urinary miRNAs panel for diagnosing and predicting recurrence of BC. Genome-wide miRNAs analysis by deep sequencing followed by two phases of quantitative real-time PCR assays were performed on urine supernatant of 276 BC patients and 276 controls. We id...
متن کاملRegulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness
In microRNA (miRNA) biogenesis, the guide-strand of miRNA integrates into the RNA induced silencing complex (RISC), whereas the passenger-strand is inactivated through degradation. Analysis of our miRNA expression signature of bladder cancer (BC) by deep-sequencing revealed that microRNA (miR)-145-5p (guide-strand) and miR-145-3p (passenger-strand) were significantly downregulated in BC tissues...
متن کامل